Soft Shadows

Michael Schwarz

Shadow Hardening on Contact

Shadowing = Point-Region Visibility

Task:

For each receiver sample (point),

determine visible fraction of light source (region)

- Occlusion O_1 : 30%
- Occlusion O_2 : 70%
- Total occlusion: 90%

- $\sum_{i} O_{i}$: 100%
- $\max_{i} O_{i}$: 70%
- $1 \prod_i (1 O_i)$: 79%

- Occlusion O_1 : 30%
- Occlusion O_2 : 70%
- Total occlusion: 100%

- $\sum_{i} O_{i}$: 100%
- $\max_{i} O_{i}$: 70%
- $1 \prod_i (1 O_i)$: 79%

- Occlusion O_1 : 30%
- Occlusion O_2 : 70%
- Total occlusion: 70%

- $\sum_i O_i$: 100%
- $\max_{i} O_{i}$: 70%
- $1 \prod_i (1 O_i)$: 79%

- Occlusion O_1 : 30%
- Occlusion O_2 : 70%
- Total occlusion: 79%

- $\sum_{i} O_{i}$: 100%
- $\max_{i} O_{i}$: 70%
- $1 \prod_i (1 O_i)$: 79%

Soft Shadows Image-based Solutions

Blurring of Hard Shadow Test Results

- Use any of the filtering approaches presented before
- Yields a soft-shadow-like appearance
- But: Ignores varying penumbra width

VSM, 512×512, 62×62

Blurring of Hard Shadow Test Results

- Use any of the filtering approaches presented before
- Yields a soft-shadow-like appearance
- But: Ignores varying penumbra width

Blurring of Hard Shadow Test Results

Idea: Choose blur kernel size adaptively

But how?

Percentage-Closer
 Soft Shadows (PCSS)
 [Fernando, 2005]

1. Blocker search

- 1. Blocker search
- 2. Penumbra width estimation
- 3. Filtering

- 1. Blocker search
- 2. Penumbra width estimation
- 3. Filtering

Two of these three steps require many shadow map accesses!

- Acceleration approaches
 - Subsampling
 - Prefiltering

Prefiltering

- Filtering step = Percentage-closer filtering
 - Alternative representation (VSM, CSM, ESM) allows prefiltering
 - Blurring reduces to accessing a mipmap/N-buffers/summed-area table
- Blocker search can also be sped up with prefiltering [Annen et al., 2008]
 - Averaging the depth of shadow map samples closer to the light can be expressed as a convolution
 - Hence approach analogous to CSM is possible ("CSM-Z")
 - Examples: Convolution Soft Shadows, Exponential Soft Shadow Mapping [Shen et al., 2013]

Variance Soft Shadow Mapping

Estimates average occluder depth directly from prefiltered VSM

- Expression involves Chebyshev inequality
- Problem: Chebyshev inequality may not be applicable
 - Happens if average depth in query region is larger than receiver depth
 - Conservatively assuming receiver point is fully lit often leads to artifacts
- Improvement: subdivide query region and recurse on subregions
 - If region small and Chebyshev inequality still not applicable: use 2×2 PCF

High-Quality Filtering

PCF: samples weighted equally

24%	40%	40%	40%	8%
60%	100%	100%	100%	20%
60%	100%	100%	100%	20%
60%	100%	100%	100%	20%
36%	60%	60%	60%	12%

Analytic: actual coverage [Shen et al., 2011]

Anisotropic Filter Kernels

[Shen et al., 2011]

[Shen et al., 2013]

Predicted Virtual Soft Shadow Maps

[Shen et al., 2011]

Adaptive shadow-map partitioning

- Guided by perceptual resolution prediction metric
- Accounts for screen-space frequency of penumbrae

Main sources of incorrectness

- Single planar occluder assumption
- Classification as light blocking solely based on depth test

Main sources of incorrectness

- Single planar occluder assumption
- Classification as light blocking solely based on depth test

- + Simple and reasonably fast
- + Often visually pleasing results (at least for smaller light sources)
- Not really physically plausible
- Only accounts for occluders visible from light source's center

Visibility Computation = Filtering

[Soler and Sillion, 1998]

- Rectangular light source
- Planar occluder parallel to light
 - Represented by blocker image
- Visibility factor is obtained via box filtering the blocker image
 - Filter size equals appropriately scaled light size

Visibility Computation = Filtering

Advantages

- Enables prefiltering
- Query becomes constant-time (independent of light size)

Decompose scene into multiple planar layers

- Slice scene parallel to light source
- Project geometry within slice onto slice's bottom plane

[Eisemann and Décoret, 2006]

Decompose scene into multiple planar layers

- Slice scene parallel to light source
- Project geometry within slice onto slice's bottom plane
- Covered parts of each slice are encoded in a binary occlusion texture (= blocker image)

- Prefilter occlusion textures
- At each view sample
 - For each blocking slice, lookup appropriately filtered response in prefiltered occlusion texture
 - Accumulate per-slice shadow contributions

- + Plausible soft shadows at high frame rates
- + Performance independent of light size
- Mainly suited for compact indoor environments
- Heuristic occluder fusion
- Discretizes occluders into small number of perforated planes

Occluder Backprojection

- For each (relevant) occluder
 - Project it onto light source
 - Determine covered light area
 - Aggregate this occlusion information
- Gathering

For all receiver points For all potential occluders

Scattering

For all occluders For all affected receiver points

[Atty et al., 2006; Guennebaud et al., 2006]

- Approximate (subset of) occluder geometry
- Generate shadow map (from light's center)

Approximate (subset of) occluder geometry

- Generate shadow map (from light's center)
- Derive occluder approximation by unprojecting texels into world space
 - Micropatches

[Atty et al., 2006; Guennebaud et al., 2006]

- Backproject micropatches onto light source to determine visibility
- Simple approach:
 Sum up projections' covered areas
 - Ignores overlaps

- Backproject micropatches onto light source to determine visibility
- Simple approach:
 Sum up projections' covered areas
 - Ignores overlaps

- Backproject micropatches onto light source to determine visibility
- Simple approach:
 Sum up projections' covered areas
 - Ignores overlaps

- Backproject micropatches onto light source to determine visibility
- Simple approach:
 Sum up projections' covered areas
 - Ignores overlaps

Overlapping Artifacts

Reference

Area accumulation (without accounting for overlaps)

Overlapping Artifacts

Reference

Occlusion bitmasks (with correct overlap handling)

[Schwarz & Stamminger, 2007]

Light sample

point

- Set of binary point-to-point visibility relations
- Bit field is employed to track visibilities of sample points on light source

[Schwarz & Stamminger, 2007]

- Set of binary point-to-point visibility relations
- Bit field is employed to track visibilities of sample points on light source

[Schwarz & Stamminger, 2007]

- Set of binary point-to-point visibility relations
- Bit field is employed to track visibilities of sample points on light source

[Schwarz & Stamminger, 2007]

- Set of binary point-to-point visibility relations
- Bit field is employed to track visibilities of sample points on light source

[Schwarz & Stamminger, 2007]

Sample visibility instead of accumulating areas

- Set of binary point-to-point visibility relations
- Bit field is employed to track visibilities of sample points on light source

16×16 jittered light sample points

Visibility determination methods

- Area accumulation
- Occlusion bitmasks

- Visibility determination methods
- Occluder approximations
 - Micropatches
 - Microquads (and microtris)
 - Occluder contours

- Visibility determination methods
- Occluder approximations
- Acceleration by adapting accuracy
 - Micro-occluder subsampling
 - Coarser occluder approximations
 - Subsampling in screen space

- Visibility determination methods
- Occluder approximations
- Acceleration by adapting accuracy
- Acceleration via multi-scale (min/max) representations
 - Search area pruning
 - Direct identification of umbra and fully-lit receiver points
 - Hierarchical occluder construction

- Visibility determination methods
- Occluder approximations
- Acceleration by adapting accuracy
- Acceleration via multi-scale (min/max) representations
- Practical example: variant by Geometrics [Martin, 2012]
 - Targets large area lights
 - CUDA-based implementation

- + Physically plausible
- Rather high quality at real-time frame rates possible
- Performance strongly dependent on
 - Number of pixels requiring backprojection
 - Search area size (number of backprojected texels)
- Uses only approximation of subset of occluders
 - Typically those visible from the light source's center

