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Shadows in Games: Crysis 1 



Shadows in Games: Crysis 2 



Shadows in Games: Crysis 3 

 



Shadows in Games: Ryse 

 



Shadow Methods & Techniques 

 Deferred Shadows 

 Cascaded shadow maps 

 Soft Shadows Approximation 

 Shadows & Transparency 

 Contact Shadows/SSDO 

 Screen Space Self-Shadowing 

 Volumetric shadows 

 Area Light Shadows 

 

 



Typical Shadows Frame Budgets  

 33 ms typical videogame frame budget (30 FPS) 

 4000 Draw calls (average PC) 

 ~5-7ms shadows frame budget 

 10Mb shadowmap texture  

pools (x360, ps3) 

 PC can go much higher 

 10+ shadow casting lights 

 

 

 



Deferred Shadows 

 Shadow mask for the sun 

 Special render target to accumulate shadow occlusion 

 Shadow mask combines multiple shadowing technique on top of each other before using in 
actual shading 

 VSM, per-object shadows, clouds shadows 

 Point light shadows rendered directly to the light buffer 

 

10+ shadow casting lights Sun shadow mask 



Cascaded Shadows Maps 

 View Frustum is covered with multiple shadow frustums  

 Usually distance-based splitting 



Cascaded Shadows Maps 

 Cascades Splitting Scheme 
 Approximate Logarithmic texel density distribution 

 Shadow frustums adjusted to cover the camera view 
frustum conservatively 

 Orientation for shadow frustums is fixed in world space  

 Having more cascades allows  
 Improved texel density, reduced aliasing and improved                     

self-shadowing for wider shadow range due to a better                      
approximation of the logarithmical distribution  

 For each cascade snap the shadow frustum to the SM’s texel grid 

 

 



 Shadow passes for cascades/point lights are rendered in a deferred way 

 Potential shadow-receiving areas are tagged in the stencil buffer by 
rendering frustum volumes 
 Allows to have a more sophisticated splitting into cascades  

 Picks a cascade with the highest resolution in overlapping regions 

 Uses shadow map space more efficiently 

 

Deferred Shadow Passes 



 Not all the cascades are updated in one frame 

 Update cost distributed across several frames 

 Performance reasons 

 Allows us to have more cascades – better shadow map density distribution  

 Distant cascades are updated less frequently 

 Cached Shadow Maps are not updated but are used for shadowing 

 Can handle dynamic objects with additional memory 

 Last cascade uses VSM and blends additively with the shadow mask 
 Allows to have large penumbras from huge distant objects 

Shadow Cascades Caching 



 We always split omni-directional lights into six independent projectors 

 Shadow map for each projector is scaled separately 
 Based on the shadow projection coverage 

 Final scale is a result of  
a logarithmic shadow map density distribution function,   
which uses the coverage as a parameter 

 Use cascades for large projectors 

 Texture atlas to pack all shadow maps  
each frame after scaling 
 Texture atlas is allocated permanently to avoid  

memory fragmentation 

 Size on consoles: 1024x1024 (4 MB) 

 Receiving areas tagged by stencil 

 

Point Light Shadows 

Shadow atlas 



 Used to increase self-shadowing details in cutscenes and for very 
large and detailed objects in game (first person weapon) 

 Separate hi-resolution shadow map for dedicated objects 

 Global and per-objects shadows are blended to the shadowmask 
with a max() filter. 

 Huge per-object shadow map bias to eliminate low-res self-
shadowing with global shadow maps (CSM, point lights) 

 Objects still cast global low-resolution shadows 

 Self-shadowing comes from hi-resolution shadow map only 

 

 

Per–Object Shadow Maps 



 

 

Per–Object Shadows 



 

 

Per–Object Shadows 



 

 

Per–Object Shadows 



 Different first-person and third-person models for rendering and 
global shadow map generating 

 Proper self-shadowing is achievable only with separate per-object shadow 
maps 

 

First Person Weapon Self-Shadowing 



 Problem with deferred shadowing 

 uses different view frustum (near/far planes, FOV) 

 General case - need to re-project weapon depth from the “weapon” space 

 When FOV difference is not large –  approximate re-projecting with simple depth re-scaling 

First-Person Weapon Self-Shadowing 



Soft Shadows Approximation 

  



Soft Shadows Approximation 

 We use Poisson PCF taps with randomized rotations in shadow space 

 

 

 

 

 Adjusting the kernel size at runtime gives a good approximation of soft 
shadows with variable penumbra 

 Soft shadows idea: Estimate average distance ratio to shadow casters 
 Similar to  Percentage-Closer Soft Shadows [Randima05] 



 Basic Algorithm: 

 Poisson-distributed taps are presorted by distance from the kernel center 

 Initial kernel radius set to match the maximum range (= largest/longest penumbra) 

 Use this kernel to estimate the average distance ratio 

 The amount of samples is reduced proportionally to the avg. distance ratio 

 This affects the radius of the kernel since the taps are sorted 

 Use only the reduced amount of samples for final shadow computation 

 Cascade shadow maps need custom kernel scale adjustment  
to handle transitions between cascades 

 Compute Shader option: fetch all taps to CS shared memory  
and reuse them for both distance estimation and shadow computation 

Soft Shadows Approximation 



Area Lights Shadowing 

 

No light 



Area Lights Shadowing 

 

Simple soft-shadows approximation 



Area Lights Shadowing 

 

Voxel based area light shadowing 



Area Light Shadows 

• Multi-resolution uniform voxel data 

• Efficient occlusion sampling for very large volumes 

• Adaptive resolution for ray traversal 

• Multiple distance-based cascades are an option  

• Dynamic surface voxelization and downsampling 

•  Downsampling “directional occlusion” values 

• Adaptive downsampling 

• Avoids updating static parts of the scene each frame 

• Bit-masked change-aware downsampling (XOR with the previous 
frame’s voxel data) 

 



Area Light Shadows 

Voxelized scene 



Voxel Data Downsampling 

• Directional occlusion Concept 

• Downsample light occlusion 

• Bi-directional; 3 component 



Voxel Data Downsampling 



Area Light Shadows: Cone Tracing 

• Approximation of grouped rays 



Area Light Shadows: Cone Tracing 

• Sample different Voxelization levels 

• Adjust voxel level along the ray 

• Directional Occlusion Gathering 

 



Area Light Shadows: Cone Tracing 

• Sampling Errors 



Area Light Shadows: Cone Tracing 

• Sampling Errors 

 



Area Light Shadows 

Ray-traced Spherical Area Light 
Autodesk Maya 2012 ~40s 

 
Real-time Area light shadows ~20ms 
(Voxelization + Cone Tracing ) 



Area Light Shadows 

 World Space Ambient Occlusion with cone tracing  

 Approximated with 8 uniformly distributed cones 

 



 For alpha blended shadow receivers 

 Forward passes to apply shadows 

 For transparent shadow casters(e.g. hair, smoke) we accumulate 
alpha values of the casters 

 Stored in a 8-bit render target 

Shadows & Transparency 



 Translucency map generation: 

 Depth testing using depth buffer from a regular opaque shadow map to avoid 
back projection/leaking 

 Transparency alpha is accumulated  only for objects that are not in “opaque” 
shadows 

 Alpha blended shadow generation pass to accumulate translucency alpha 
(sorted back to front) 

 In case of cascaded shadow maps, generate translucency map for each 
cascade 

 Shadow terms from shadow map and translucency map are both combined 
during deferred shadow passes with max() operation 

 

 

Shadows & Transparency 



Contact Shadows/SSDO 

 Contact Shadows/SSDO   
 Applied to all light sources and ambient, via screen space bent normals (average unoccluded 

direction) 

SSDO off SSDO on 



 Core idea the same as SSDO [Ritschel 2010] 

 Modulate lighting with computed screen space occlusion 

 Produces soft contact shadows 

 Can also hide shadow bias issues 

 Considerable quality gain over just SSAO 

 Directional occlusion information is accessible in a deferred 
way 

 Fits better into the existing lighting pipeline 

 Can be applied efficiently to every light source 

Contact Shadows 



 Occlusion information generation 

 Compute and store bent normal N' during SSAO pass 

 Bent normal is average unoccluded direction 

 Requires clean SSAO without any self-occlusion and a relatively wide radius 

 For each light 

 Compute N dot L as usual 

 Compute N' dot L 

 Center depth is full resolution, all other taps     
 are FP16 half-resolution depth 

 Attenuate lighting with the occlusion amount multiplied by a clamped 
difference between the two dot products 

Contact Shadows 



 Simple trick/approximation 

 Ray casting along screen space light vector 

 For cutscenes specify the affected depth buffer range 

 Ray length tracking allows to even compute proper soft shadowing 

Screen Space Self-Shadowing 



Volumetric Fog Shadows 

 Based on TÓTH09: accumulate not in-scattered light but shadow contribution 
along the view ray instead 

 



 Ray casting in shadow space 
 Interleave pass distributes shadow samples along the view direction on a 

8x8 grid shared by neighboring pixels 
 Half-resolution destination target for performace 

 Gather pass computes final shadow value 
 Bilateral filtering was used to minimize ghosting and halos 
 Shadow stored in alpha, 8 bit depth in red channel 
 Used 8 taps to compare against center full resolution depth 

 Max sample distance configurable (~150-200m in C3 levels) 
 Cloud shadow texture baked into final result 
 Final result modifies fog height and radial color 

Volumetric Fog Shadows 



Volumetric Fog Shadows: Naive Upscale 



Volumetric Fog Shadows: Bilateral Upscale 



 Cascaded shadow map ray casting  
 Ray casting happens in shadow space 
 Adaptive ray casting - more samples taken                       

in the near space 
 Arbitrary shadow frustums for cascades 
 Frustums are overlapped 
 Always pick the cascade with       

the highest sampling density 
 Use global parametric coordinate to store the current ray’s intersection points 

with the shadow frustum  
 No need to re-project between cascades 
 Optimized ray clip  function that directly modifies the global parametric 

coordinate 
 

Volumetric Fog Shadows 



CSM frustum split schemes analysis 



Logarithmical Split Scheme 

 Multiple split schemes for variable CSM‘s bounds 



Typical Logarithmical Split Scheme 

 Splits overlapping dependency on the CSM‘s near bound 
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 Cascaded splits‘ frustums overlapping 
 Using accurate logarithmic distribution is difficult for the splits that are 

close to the near plane 

 Closest splits are adjusted manually  

 Efficient cascades splitting is very sensitive to the camera’s near 
plane and FOV   
 Larger FOV increases shadow frustums overlapping 

 Larger FOV increases shadow map waste on invisible parts of the scene 

 Closer near plane increases shadow frustums overlapping 

 Tighter CSM bounds for cutscenes with limited depth range 

 

Cascaded Shadows Maps Split Consideration 



Tighter CSM Bounds for Cutscenes 



Tighter CSM Bounds for Cutscenes 



Tighter CSM Bounds for Cutscenes 



Light Space vs. View Space Shadow Frustums Alignment  

 View space aligned 
 Better shadow space usage 

 Less frustum overlapping 

 Higher Shadow map sampling  

 density 

 Shadows are not stable in case      
of shadowmap under-sampling        
(shadow aliasing - shimmering for moving camera) 



Light Space vs. View Space Shadow Frustums Alignment  

 Light space aligned shadow frustums 

 Less efficient shadow map usage due to increased frustums overlapping 

 More efficient for Shadow Cascades Caching 

 Allows to use shadow map texel size snapping  

 Stable shadows for under-sampled shadow maps with moving camera 



 Influencing factors: 

 Low shadow map sampling density  

 Precision of the depth buffers 

 Direction of the light source relative to the camera  

 

 

 

 

Shadow Aliasing with Cascaded Shadow Maps  



 

 Different scenarios to overcome aliasing 

 Sun shadows: front faces rendered with slope-scaled depth bias 

 Point light shadows: back face rendering, works better for indoors 

 Variance shadows for distant LODs - render both faces to shadow maps 

 Constant depth bias during deferred shadow passes to overcome 
depth buffer precision issues 

Shadow Aliasing 



Current Situation  

 Mostly undersampled shadows are used in games nowadays  

 Cascades splitting is not efficient  

 Tricks like shadowmap texels snapping, per-object shadows  

 Per-level/cutscene tweaked solutions 



 Eliminate/minimize overlapping of cascaded shadow map 
frustums 

 Eliminate/minimize unused regions in the shadow map  
 Minimize shadow map waste on invisible parts of the scene 
 Aim for the very high shadow map sampling density – makes 

tricks like shadow map texel snapping unnecessary 
 Guarantee close to constant shadow map sampling density for 

all regions of the scene 
 Having close to constant shadowmap density helps to address 

the shadow aliasing problem 
 

Main Goals – What We Are Trying to Achieve 



 A type of parallel projection 

 Projects an image by intersecting parallel rays 
(“projectors”) from a three-dimensional source object 
with a target projection plane 

 The projectors are not perpendicular to the projection 
plane 
 

Oblique Projection for Cascaded Shadow Maps  



 The projectors are defined by the two angles α and λ where 
 α is the angle between the line (x,y,xp,yp) and the projection 
plane,  
 λ is the angle between the line (x, y, xp, yp) and the x axis on the 
projection plane 
L = the length of the line (x,y,xp,yp). L1 = L / z 

Oblique Projection for Cascaded Shadow Maps  
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 Use oblique projectors 

 Use view frustum clip planes as a shadowmap projection planes  

 Projection planes are selected from the 5 view frustum planes (Far 
plane is irrelevant) 

 Oblique projection planes for shadow projections are selected 
based on the light direction  

 Select planes that have the same sign of the dot product between the 
plane normal and the light direction as the nearest plane 

Oblique Projection for Cascaded Shadow Maps  



Planes Selection 



 Projection planes are split into segments to get an approximation 
of a logarithmic distribution 

 Plane segments are essentially shadowmap cascades 

 Faraway segments cover more area with the same shadow map 
resolution  

 CPU culling of shadow casters is performed with a set of oblique 
frustums 

 

 

Oblique Projection for Cascaded Shadow Maps  



Plane Segments Selection 



View Frustum Slices (Left Plane) 



View Frustum Slices (Left Plane) 



View Frustum Slices (Left Plane) 



View Frustum Slices (Left Plane) 



View Frustum Slices (Bottom Plane) 



View Frustum Slices (Bottom Plane) 



View Frustum Slices (Bottom Plane) 



View Frustum Slices (Bottom Plane) 



View Frustum Slices (Near Plane) 



Plane Segments Selection 



View Frustum Slices (Right Plane) 



View Frustum Slices (Right Plane) 



View Frustum Slices (Right Plane) 



View Frustum Slices (Right Plane) 



View Frustum Slices (Top Plane) 



View Frustum Slices (Top Plane) 



View Frustum Slices (Top Plane) 



View Frustum Slices (Top Plane) 



View Frustum Slices (Near Plane) 



 Extend frustum segments to quads and use a rectangular 
shadow map 
• Requires more plane segments to get an acceptable approximation of a 

logarithmic splitting 

• wasted shadow space 

 Use view camera perspective warp together with oblique projection 
 Virtual view camera with shifted and expanded near plane 
 Almost no wasted shadow space 
 Can be used successfully when we have enough  shadow map sampling density 

to overcome shimmering  
 Logarithmic distribution for projection planes segments 

Shadow Map Parameterization 



Shadow Map Parameterization 



Shadow Map Parameterization 



Oblique Shadow Projection 



Oblique Shadow Casting 



Affected Projection Planes Segments and Frustum Slices 



Oblique Shadow Projection 



 Shadow maps accurately cover                
the view frustum  

 Only small parts of shadow maps are  
wasted on invisible areas of the scene 

 No cascades overlapping 
 Potentially shadow-receiving areas get guaranteed shadow sampling 

density since casters are projected on the most appropriate plane 
segments  

 The approach is designed to maintain close to constant shadow map 
sampling density independent of light direction 
 Helps to address shadow aliasing problem 

 

 
 

Oblique Shadow Projection 



 Shadow map rendering 

 Every split of view frustum plane is processed independently   

 Geometry shader replicates triangles between several 
segments on a plane when necessary  

 Proper plane’s segment is selected based on the Z coordinate 
in the view space 

Implementation Details 



 Deferred shadow rendering 
 Consequently apply shadows from  all oblique shadow maps 
 No complex stenciling between cascaded is needed as oblique frustums do not 

overlap  
 Texture arrays to index global shadow map segments/cascades 

 Forward shadow rendering 
 straightforward shadow maps indexing with a one-to-one correspondence of 

the shadowed regions in to the shadow map regions 

 Clustered Forward and Deferred Shading 
 No overlapping for shadow frustums 
 straightforward shadow maps indexing  with a one-to-one correspondence of 

the clusters to the shadow map regions with oblique projection 
 

 
 

Use Cases 



 Efficient texture space usage  

 Better addressed shadow aliasing problem 

 Allows to approach guaranteed shadowmap sampling 
density 

 Aliasing-free if hi-resolution shadow maps are used  

(1-2K, optimal 4K) 

 
 

Oblique Shadow Projection Features 



Oblique Shadow Projection: Demo  



Summary   

 Deferred Shadows 

 Cascaded shadow maps 

 Soft Shadows Approximation 

 Voxel based area light shadows 

 Shadows & Transparency 

 Contact Shadows/SSDO 

 Screen Space Self-Shadowing 

 Volumetric shadows 

 Oblique projection for cascaded shadow maps 
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