
	
	TDA361 - Computer graphics

Lab 6 – Shadow Maps
In this lab, we will implement a technique called Shadow Mapping. Shadows greatly increase the realism in computer genereated images and this technique is the one most commonly used in games and realtime applications these days. Make OpenGL_Lab_6 the startup project and run the program. You will see that we have added a light source - drawn as a white quad - that rotates around the scene.
Before proceeding with this lab, make sure you read the section in the course book on shadow mapping (chapter 9.1.4). Then look through the code and make sure you understand how it works. Note that we set up a whole new view and projection matrix for the light source, as we will need to render the scene from the lights viewpoint to obtain our shadow map.

Simple shading

Before we get started creating our shadows, let's implement a simple light-model. The subject of shading will be gone through in great detail in the CgFX lab, after this one, but to improve the look of our program, let's add some diffuse direct lighting to the scene. There is a global variable called lightPosition in the program now, which is updated each frame by the call to setLight(). In drawScene(), send the lights position in modelview coordinates to the vertex shader:

// Send the lights modelview coordinates to the shaders

Vec3f lightpos_mv = viewMatrix.multPnt(lightPosition);

glUniform3fv(glGetUniformLocation(shaderProgram, "lightPosition"), 1,

 lightpos_mv.vec);

Then, add this as a uniform input to the fragment shader (shading.frag):

uniform vec3 lightPosition;

Now, multiply the texture color by the amount of direct lighting that reaches the fragment (not accounting for shadows):

vec3 posToLight = normalize(lightPosition - modelViewPosition);

fragmentColor = max(0, dot(posToLight, normalize(normal))) *

texture(tex0, texCoord.xy);
Run the program again. You'll now see that the torus and floor are properly lit, but no shadows are cast from the torus onto the floor.

Creating the shadowmap

A shadowmap is simply a texture containing the depth buffer rendered from the lights' viewpoint. So, we will need to do one render-to-texture pass as in the previous lab. First though, let's render the shadowmap to the default framebuffer so we can see what it looks like.

Look at the drawShadowMap() method. It works just like drawScene(), only it uses a different shader that doesn't need anything but the modelViewProjection matrix. For now, in display() comment out the calls to drawLight() and drawScene() and add a call to drawShadowMap() instead:

setLight(lightViewMatrix, lightProjectionMatrix);

drawShadowMap(lightViewMatrix, lightProjectionMatrix);

// Draw light for reference

//Mtx4f lightModelMatrix = lightViewMatrix;

//lightModelMatrix.invert();

//drawLight(lightModelMatrix, viewMatrix, projectionMatrix);

// we then pass these matrices to the scene drawing function.

// drawScene(viewMatrix, projectionMatrix,

//
lightViewMatrix, lightProjectionMatrix);

This will not look like much though since our fragment shader only writes (1,1,1,1) to the color buffer. To temporarily see what gets written into the depth-buffer, change the simple.frag shader so it says:

fragmentColor = vec4(gl_FragCoord.z);
This means that the fragments depth will be written to all the color channels as well as the depth buffer. Now run the program and see what the shadowmap will look like. A whiter color means a higher depth. When you understand what you are looking at, change the fragment shader back again, or the lightquad will look weird. Also, leave the call to drawShadowMap in display(), but uncomment the calls to drawLight and drawScene.
Now create the shadowmap texture and the framebuffer used for drawing to that texture. Add at the end of initGL():

//***

// Create shadowmap texture and framebuffer

//***

glGenTextures(1, &shadowmapTexture);

glBindTexture(GL_TEXTURE_2D, shadowmapTexture);

glTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT32, shadowmap_resolution,

 shadowmap_resolution, 0, GL_DEPTH_COMPONENT, GL_FLOAT, 0);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_MODE,

 GL_COMPARE_REF_TO_TEXTURE);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_FUNC, GL_LEQUAL);

Vec4f ones(1.0, 1.0, 1.0, 1.0);

glTexParameterfv(GL_TEXTURE_2D, GL_TEXTURE_BORDER_COLOR, ones.vec);

glGenFramebuffers(1, &shadowmapFBO);

glBindFramebuffer(GL_FRAMEBUFFER, shadowmapFBO);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D,

 shadowmapTexture, 0);

glDrawBuffer(GL_NONE);

glReadBuffer(GL_NONE);

// Activate the default framebuffer again

glBindFramebuffer(GL_FRAMEBUFFER, 0);
And in the beginning somewhere in the global scope, add these global variables:

GLuint shadowmapTexture;

GLuint shadowmapFBO;

const int shadowmap_resolution = 1024;

In drawShadowMap() add:

glBindFramebuffer(GL_FRAMEBUFFER, shadowmapFBO);

glPushAttrib(GL_VIEWPORT_BIT);

glViewport(0,0,shadowmap_resolution, shadowmap_resolution);

on the first line and:

glPopAttrib();

glBindFramebuffer(GL_FRAMEBUFFER, 0);

on the last.
Congratulations! Your program now creates a shadow-map.

Using the shadowmap

Now that we have a shadowmap, we want to change our shaders so that for every fragment drawn, we look into the shadow map to see if there is anything closer to the light. If there is, the fragment is in shadow. To do this, we will need a matrix in our vertex shader that transforms a coordinate from the cameras modelview-space onto the shadow map. Add the following code to drawScene():

/**************************

 * Draw the floor

 *************************/

Mtx4f modelViewMatrix = viewMatrix * floorModelMatrix;

Mtx4f lightMatrix = viewMatrix;

lightMatrix.invert();

lightMatrix = lightProjectionMatrix * lightViewMatrix * lightMatrix;

glUniformMatrix4fv(glGetUniformLocation(shaderProgram, "lightMatrix"),

 1, false, lightMatrix.array);

And:

/**************************

 * Draw the torus

 *************************/

modelViewMatrix = viewMatrix * torusModelMatrix;

lightMatrix = viewMatrix;

lightMatrix.invert();

lightMatrix = lightProjectionMatrix * lightViewMatrix * lightMatrix;

glUniformMatrix4fv(glGetUniformLocation(shaderProgram, "lightMatrix"),

1, false, lightMatrix.array);

Then in the vertex shader (shading.vert), add this uniform and a shadowMapCoord that can be sent to the fragment shader:

uniform mat4 lightMatrix;

out vec4 shadowMapCoord;

Then do the transformation on the last line of the vertex shader:

shadowMapCoord = lightMatrix * vec4(modelViewPosition, 1.0);
Projecting and homogenizing a coordinate puts any point within the viewing frustrum in the unit box from (-1, -1, -1) to (1,1,1). The texture space is defined from (0,0,0) to (1,1,1) however, so to use our shadowMapCoord to look up into a texture we will need to transform it further. Add these two lines:

shadowMapCoord.xyz *= vec3(0.5f, 0.5f, 0.5f);

shadowMapCoord.xyz += shadowMapCoord.w * vec3(0.5f, 0.5f, 0.5f);

Time to do the actual lookup. In the fragment shader, first add the shadowMapCoord input:

in vec4 shadowMapCoord;

Then we need to add a sampler for the shadowMap:

uniform sampler2DShadow tex1;

Then, in drawScene() we need to bind the shadowMap to tex1:

glUniform1i(glGetUniformLocation(shaderProgram, "tex1"), 1);

glActiveTexture(GL_TEXTURE1);

glBindTexture(GL_TEXTURE_2D, shadowmapTexture);
Finally in the fragment shader we can do a shadow-lookup:

fragmentColor = texture(tex0, texCoord.xy);

vec3 posToLight = normalize(lightPosition - modelViewPosition);

fragmentColor = max(0, dot(posToLight, normalize(normal))) *

texture(tex0, texCoord.xy);

fragmentColor *= textureProj(tex1, shadowMapCoord);

fragmentColor.a = 1.0;
Now run the program. The shadow will be there, but there will be some very annoying patterns on the floor. This is called "surface acne" and is one of the problems with shadow-maps. Consider what happens when a fragment from the floor which is not in shadow looks into the shadow map. The closest depth in the shadowmap will be from almost the same part of the floor, but not exactly. So sometimes the lookup will return that the current fragment is closer and sometimes that it is further from the light than what is reported in the shadow map. A good figure that describes the problem is in the course book, Figure 9.17.
A simple, but not perfect, solution to this is to simply "push" the polygons a tiny bit away from the light when drawing the shadow map. Add the folowing to the begining of drawShadowMap():

glPolygonOffset(2.5, 10);

glEnable(GL_POLYGON_OFFSET_FILL);
And then on the final line of the method, turn it off again:

glDisable(GL_POLYGON_OFFSET_FILL);

Now run the program and enjoy the shadows.

Assignments

· Make the shadow map smaller now. Make the resolution 256x256 instead. Now, if you zoom in on the shadow you will clearly see aliasing artifacts.
· These graphics cards support simple Percentage Closer Filtering in hardware. Change the lines:

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);

so they use GL_LINEAR filtering instead. Then run and zoom in on the shadows again. The problem will be slightly reduced, but far from completely removed.
When done, show your result to one of the assistants. Have the finished program running and be prepared to answer some questions about what you have done.
1
1
(Page 1

